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P OIC INTRODUCTICHE



PIOTIVATICHN

-xplore possibilities to construct quantum theories with gravity



8Dl IS a4 proper

VWV EIAT IS DPIINE

'y of perturbations around a symmetric background, e.g. the

Min

<owski space. |

nese satisty linear Poincare-invariant eom's of the form

filiese coms define representations of the Poincare algebra. One cani Gl
decompose them Into Irreducible ones. In quantum field theory one requires them to
be unitary.

S50, we need to study unitary irreducible representations (UIR's) of the Poincare

alge

50



VWV EIAT IS DPIINE

UIR's of the Poincare algebra have been classified long ago. Most relevant for physics
are massive and massless representations. [hey also carry an additional quantum
number - spin, integer or half-integer (for simplicity d=4).

Massive UIR's m? # 0, s=0,-1=43 |

Massless UIR'’s me =0, s=0 4= 3 =

S0, spin characterizes how the field transforms with respect to the Poincare algebra

[for detalls, see the QFI book of Weinberg]



VWV EIAT IS DPIINE

t 1Is convenient to make Lorentz symmetry manifest by employing Lorentz tensors.
-or massive Integer spin-s UIR's we have

where phi Is a symmetric rank-s tensor:



VWV EIAT IS DPIINE

Massless UIR's in terms of Lorentz tensors can be described as
¢a1...as - :
6b¢ba2...as S O,

bas a.
¢ba3 0 9

where, In addrtion, one should quotient out pure gauge states

by ecolbe | 0
8 = e 9

5¢a1...a8 i 8a18a2...a8 4 . Where 6b€ba2...as_1 = 0,

5bba3“‘a’8_1 -

Here epsilon Is a symmetric rank-(s-1) tensor



From now on, | will discuss only massless fields. Gauge invariance 1s what makes them
more Interesting




A0

Minimal action

— 1
i —% /ddﬂf <8b¢a1---a38b¢almas 8(82 )8b¢cca3...asab¢dda3mas

+ 5(5 = 1)8b¢cca3...as 8d¢bda3...as - 38b¢ba2...as ac¢ca2...as

e o
S(S i(s )8b¢bcca4...a8 8d¢fdfa4mas>

Gauge transformations
5¢Q1...&3 — aalgaQ---CLS _I_ S .

¢bb caq. . a. gbba3"‘a8_1 L)

C 9

|Fronsdal /8]



LiGH [-CONE APPROACTE

Action

1

S=—— /d4:1:8a<l>)‘0a<1>_)‘

Poincare generators act by
Paq))\ - 8CL(I)>\’

where

0

STapr = . Eiig = G

9 fae

2

Jab(I))\ - (xaab o :Ebaa Sab)q))\

S D =D S0 .\ @

()

Action 1s much simpler; though,

()

crehlz invarianee Is not maniest



AIDING INTERACTIONS

VWe add higher-order terms to the action (cubic in fields and higher)

What to demand! Wightman axioms! Correlators, QFT.

Our requirements:

Poincare-invariant action
No extra degrees of freedom

Locality: not too many derivatives



L OWER-SPIN EXAMPLES

1he Yang-Mills theory:

Quadratic part of the action Is spin-| action of Fronsdal
nteractions: cubic and quartic terms

Poincare Invariance: manifest
Gauge Invariance: not broken at the non-linear level
Derlvatives: no more than two

QOO

Good Interacting massless theory of spin |




L OWER-SPIN EXAMPLES

General relativity:

—xpand around flat metric: Gab = Nab + Nab

Quadratic part of the action Is spin-2 action of Fronsdal
nteractions: terms of all orders in h

Poincare Invariance: manifest
Gauge Invariance: not broken at the non-linear level
Derlvatives: no more than two

Good Interacting massless theory of spin 2



FIGGHER-SPIN PROBEEE

Construct a theory, that involves interacting massless field of spin > 2




R ROACHES 1O RS INTERAC TGS



i [ VWORKED FOR YN ANET TS

The key to success was that there existed non-linear deformations of Fronsdal's
sauge transformations. Moreover;, it was known how to build Invariants of these
symmetries.

These symmetries — diffemorphisms and local gauge transformations on the

principal bundle — have geometric meaning. [ hen, the knowledge from Riemannian
seometry and geometry of principal bundles was helpful for building an action.

In the higher-spin case, thus far, higher-spin symmetries do not have any other
meaning than the result of the non-linear deformation of Fronsdal transformations. So,

we do not have any tool to write out the higher-spin action as easily as for GR or the
q i theory.




FENDARD [OOLS DO NOT VOIS

One can try to couple a free higher-spin field to gravity in the standard way

S0 — S|V], 0|0|¢p — 0|V]op

1 his does not work:

5[V]S[V] X Rab,cd(- . )

Moreover, this lack of gauge Invariance cannot be compensated by allowing the
metric transform with respect to HS gauge transtormations

[ he same applies to coupling to the YM connection

| Arasone, Deser i



e NOE T HER PROUCED S

Noether procedure: require gauge Invariance order by order in fields
B =9 F 55 L 00 = 0o + 010+ ...

S2N¢°¢7 ngg¢¢¢7 5O¢N€7 51¢N95¢

Gauge Invariance of the complete action then implies

dos = B
0053 + 0152 =0
0094 + 0153 + 0259 = 0

Y —



e NOE T HER PROUCED S

First non-trivial order
5033 . 5132 —

0.5
0152 = 01¢ gb
5053 ~ ()
Note that
0.55
T b
if one allows
1
01p=—=(...)

then (1) Is trivial as a constraint on 5_3



e NOE T HER PROUCED S

In other words, imposing |ocality is_absolutely crucial in the Noether procedure.
Otherwise, it becomes trivial.

More rigorous discussions of the relevance of the functional class Issue:

[Barnich, Henneaux'93]

Analysis of the Noether procedure for massless higher spin fields

| Berends, Burgers, van Dam, Boulanger;, Manvelyan, Mkrtchyan, laronna, Joung,... |



e LIGH -CONE DEFORMATION PROCEICSSS

What Is different:

Only, physical degrees of freedom. No need to care about gauge
iNvariance

However, Poincare symmetry has to be imposed

In practice: deform charges of the Poincare algebra and require that they commute properly
Py Jy [ =0,
e =0 -~ Py o e

Py Jy |+ Py Js |+ P, Jdy =0

[t 1s also crucial to require locality



b g LRRD B

Instead of studying constraints on the action, one can consider amplitudes
An(elapl; Cee envpn)

Gauge Invariance leads to the Ward identities

0
Di b

An(€17p1§-°-;€nvpn):()v Vi

Again, study them order by order



b g LRRD B

L eading orderin g
0

Pi 5

As(€1,p1;€2,p2;€3,p3) = 0, Vi
Subleading order

0
Di .

Ailer,pi; e =0 W
Ay = Agje + Ayje

"Of local contact Interaction, the associated amplitude Is polynomial i (he
Mandelstam variables. Exchanges have poles with the resides defined by A_3. So the
ooal Is to find A_4 that solves the Ward identity and has fixed singularities. If locality Is
relaxed, any solution to the VWard identity works.




SHINCOR-HELICIHT Y AMPLIFFUEES

In 4d

1 . -
Pa _§(O-a)aa)\a>\ci

Amplitudes can be expressed In terms of spinor products
L e 0

No Ward identities. Helicity constraints

t 7. d 0 .
§(|Z]5’|z] |>8|>>A h; A, \&)

fiere 1 Is nelicity



SUHIMIARY OF RESUILTS



2 VERTICES AND AMPLETUEHES

In_any d, Noether procedure, tensor amplitudes:

For generic triplet of spins there are s|+ 1| different vertices, sl I1s the minimal spin

In 4d, Noether procedure, tensor amplitudes:

FOl senieric triplet of spins there are 2 different vertices

In 4d, light cone and spinor-helicity amplitudes:

P eneric triplet of spins there are 4 different vertices




801 VERTICES AND AMPLITU S

All approaches: no solutions

First result of this type: Weinberg's no-go theorem
[ Weinberg' 64]



Ve olLIEY [ HECORT



VASILIEV | MEORT

First step: going to AdS space

What Is special about AdS space! singleton representations




LA O-FRONSDAL | HECHRER

e AIh space isometry algebra 50(qd,2) in da+| dimensions IS it T
conformal iIsometry algebra of the Minkowski space in d dimensions. S0,

6 =0

in Minkowski d defines a representation of 5O(d,2), called Rac. Moreover,; the
-lato-Fronsdal theorem states that the tensor product of two Rac’s

Rac) ® |Rac) = Z im0 5

oives the sum of massless fields in AdS vv|th integer spins.
|Flato, Fronsdal’ /3]

-lat-space Iimit of the FF theorem is singular (does not work). Singletons In the
flat space limit become zero-momentum representations.




HIGHER-SPIN ALGEBRA

Consider symmetries of

6 =0

These are differential operators L, such that

o — U — Lo =0

They form an algebra, which for higher-spin fields in AdS plays a similar role to
that of SU(N) for the Yang-Mills theory

[Eastwood 02, Vasiliev'03]



VASILIEV | MEORT

Frame-like approach. In GR, instead of the metric, one can take the frame field
and the spin-connection to be dynamical fields

a (b b,a

- il connection can be solved In terms of the frame field fter i 2 i
farsion constraint

e dntisymmetric part of e can be set to zero by a StueckelDerg Saiiss
symmetry

5€a|b = )\a,by )\a,b = _)\b,a-

After that, e can be identified with the metric in GR



VASILIEV | MEORT

Similarly, there exists the frame-like approach for Fronsdal fields

ibr...Gbe

alu.as_l,b
(ﬁui°ﬂﬂﬁ 2 Cu ) Wy :

Again, eliminating auxiliary fields and fixing Stueckelberg gauge symmetries, one
recovers rronsdal's theory




1 he Vaslliev
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VASILIEV | MEORT

theory is given by non-linear equations of
s formulated in therms of master fie

ar, W Is a one-
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VASILIEV | MEORT

Vasiliev theory was explored at the first non-Ii

brocedure of elimination of auxiliary fields anc

near level. By following the same
fixing the gauges as at free level,
it was found, that 3-pt amplitudes that it gives are infinite

[ Giomb, YIn'09, Boulanger, Kessel, Skvortsov, laronna’ | 5]

Currently, there 1s an ongoing research explori
auxiliary fields. There 1s some progress at leac
holography, see below)

ng different schemes to el

iNg orders (INC

uding chec

iminat

S Wit

- (D

[ Vasiliev, Didenko, Gelfond, Misuna, Korybut | 5-...]



L OGRAPHIC RECONS FRUC TS



P IER-SPIN HOLOGRAT TS

igher-spin theory in AdS of Simple vector CFls i &
(d+1) dimensions . dimensions

[Sezgin, Sundell'02, Klebanov, Polyakov'02]

The simplest version of the boundary theory
s = [ dlapeTgs

Here "a’ Is the O(N) index. I he theory has infinrtely many conserved currents

el o s



P IER-SPIN HOLOGRAT TS

Witten diagrams in AdS (AdS Correlators of single tfaee
amplitudes) 5 operators in CFT

Instead of trying to prove the duality, we can use 1t as a definition of the higher-
spin theory In AdS. Then we can test its locality



L OGRAPRHIC RECONS T RUC TS

More precisely,

A3(81782783) = <J81J82J83>

This allows to reconstruct cubic couplings of the HS theory in AdS

Next,

sy S5, Ss554)
AZHC . A4\e

A4(817 52,93, 54)

Ay

Then, use analytic properties of Witten diagrams to see whether the contact
interaction is local



L OGRAPRHIC RECONS T RUC TS

In the Mellin representation, contact VWitten diagrams are given by polynomials
of the so-called Mellin variables, while Mellin amplitudes for exchanges have
simple poles. This makes Mellin amplitudes similar to flat-space amplitudes,
expressed In terms of the Mandelstam variables.

Higher-spin case: A=d—2
A4(s,t) = 9d(s ?)5(1& §)+5(3 2)5(t—A)+5(3—A)5(t §>

Contact diagram has singularities of the same type.

Conclusion. Higher-spin amplitudes are very peculiar. They are not local In a
conventional sense. Still, being dual to free theories, they, unlikely, have issues

with, e.g. unrtarrty

| Bekaert, Erdmenger;, DE Sleight | 5,16, Sleight, Taronna |6 |l



FICGHER SPIN [ HEORIES 1IN 388



mhe BECIE

The 3d gravity In AdS can be presented as the Chern-Simons theory for
so(2,2) ~ so(1,2) & so(1, 2)

 sldcr connections

~ ~S

g ddey A= g dodr
1

80(172) i SZ(Q,R) : [Jaa Jb] = €abcd tr(Jan) - inab
hen
k 2
SCS[A]:—-——-—/tr ANdA+-ANANA
47 3
A [ s a a 1 a . a
b — SCS[A] = SC’S[AL o Z‘é Ju =Wy A leu 7 Ju =




mhe BECIE

Replacing
sl(2,R) p sl(2,R) — slI(N,R) & sl(N,R)

we obtain an Interacting theory of massless fields with spins 2,3,...,N (in the

sense that Its linearisation reduces to the sum of 3d Fronsdal actions in AdS).
One can also use

hs(\) @ hs(A), AeR
as a gauge group.



mhe BECIE

( olriments

3d story Is very different from that in 4d: massless fields with spin greater or
equal to 2 do not propagate. This Is the reason why no-go arguments do not

apply here.

Still, the end result 1s very simple and higher spins appear on the same footing
with lower-spin fields.

[ here are still some things to study, e.g. holography, black holes, etc.

Attempts to rewrite the Chern-Simons action in terms of Fronsdal fields leads
to a mess with no obvious structure.



EONFORMAL HS THEQORIES



e C ONFORMAL HS FIEDEES

At free level conformal higher spin fields are given by

S — /ddx¢SP8828 & .

where P Is the transverse-traceless projector constructed from derivatives.
Gauge symmetry

0Pus..pus = V(1 Epig.ons) T Mpr iz Xpss.pis )

In d=4 for spin | 1t gives the Maxwell theory, for spin 2 — linearised conformal
oravity. In general, these theories are non-unitary (have higher order derivatives)




L ONPFORMAL HS [ FECTE

C cnislder an action

ntegra

iIng out ph

near a

S = / d%zo*

Fanc

ocusing on

ad locdl e

len o

c cohformal

6135 [ dagitin,
S—1U

the log/\ divergent part, we obtain a non-

nigher spin Tields

S|h| = log det(Ld + Z hst)‘lOgA

 Tseytlin'Q2, 5eoglCi



L ONPFORMAL HS [ FECTE

Fegtlires:

This procedure implicitly gives the action to all orders in fields
All vertices involve finitely many derivatives once spins of fields are fixed

[t has distributional amplitudes

s~ (3)+s(3)

|Joung, Nakach, I seytln'| 5]



EriRAL HS THEOD R



L RIRAL HS T HIECRTES

I he action
S=-% / 00 00
A

l>\1—|->\2-|-)\3—1 Ipﬁ\l-l-)\z—l-)\?)

5 /d4£L‘ O P2 PpAs
z/\; P(AL 4 A2 + A3) (07)*(05)*2(05) s

i l>\1-|->\2—|—>\3—1 PA1+A2+As
i d
;/ TT(0 A2+ As) (97 )M (05 )= (0 )

o MP 2 L

P=_[(0f —05)0s + (05 —0F)01 + (85 — 67)0s]

1
3
solves g-order and partially solves g 2-order consistency conditions

[Metsaev'90]



L RIRAL HS T HIECRTES

One can note that
S=-% / o 00
1

l>\1—|->\2-|-)\3—1 Ipﬁ\l-l-)\z—l-)\?)

—|— d4 (I))\l (I))\Q(I))\S
z/\:/ TT(0 A2+ Ag) (97 )2 (05 )= (0 )
. [Pl o AT AL+ Ay A . ; 5
— d : O "l 2= o L
;/ xr()q T A A e g 1,

solves the consistency conditions to all orders. [ he resulting theory Is called the
chiral higher-spin theory

[DP Skvortsov' | 6]



L RIRAL HS T HIECRTES

Properties:

Contains finrtely many derivatives once helicities in the vertex are fixed

| he action Is not real

Can be rewritten as a self-dual Yang-Mills theory. Has similar properties
Infinite-dimensional symmetry algebra, integrability
All amplitudes vanish, including loops (QG?)

Amplitudes are expected to form a subsector of amplitudes
for the parity-invariant extension

A version of BC| relations holds
[DP| /7, Skvortsoy, Tran, Tsulaia' | 3]



e ONCLUSION AND OUTECCES



CUNC L UGIe

With the standard assumptions massless fields cannot interact. Different results,

P

however, suggest that If some assumptions are relaxed, one can obtain
consistent interacting theories. For example, consider distributional amplitudes

There I1s a couple of toy examples of higher-spin theories, which are rather
simple and completely analogous to thelir lower-spin counterparts




L URE DIREC IO

-xplore chiral higher-spin theories: instanton and black-hole solutions, test the
cseometry with the probe particles

't would be Interesting to see whether the flat-space holography can be useful
as a tool to generate higher-spin theories In flat space. Issue: no flat singleton

Application of amplitude techniques to generate higher-spin amplitudes in flat
space: BCFWV, color-kinematics duality, CHY formalism




